Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra. | −h4+h2 | −h6−2h5−1/2h3−h2+h1 | g19 | g16 | g17 | g13 | g12 | g14 | g8 | g9 | g3 |
weight | 0 | 0 | ω1+ω2 | ω1+ω3 | ω2+ω3 | 2ω3 | ω1+ω4 | ω2+ω4 | ω3+ω4 | ω3+ω4 | 2ω4 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | 0 | ω1+ω2 | ω1+ω3−2ψ1+12ψ2 | ω2+ω3+2ψ1−12ψ2 | 2ω3 | ω1+ω4+2ψ1+2ψ2 | ω2+ω4−2ψ1−2ψ2 | ω3+ω4+4ψ1−10ψ2 | ω3+ω4−4ψ1+10ψ2 | 2ω4 |
Isotypical components + highest weight | V0 → (0, 0, 0, 0, 0, 0) | Vω1+ω2 → (1, 1, 0, 0, 0, 0) | Vω1+ω3−2ψ1+12ψ2 → (1, 0, 1, 0, -2, 12) | Vω2+ω3+2ψ1−12ψ2 → (0, 1, 1, 0, 2, -12) | V2ω3 → (0, 0, 2, 0, 0, 0) | Vω1+ω4+2ψ1+2ψ2 → (1, 0, 0, 1, 2, 2) | Vω2+ω4−2ψ1−2ψ2 → (0, 1, 0, 1, -2, -2) | Vω3+ω4+4ψ1−10ψ2 → (0, 0, 1, 1, 4, -10) | Vω3+ω4−4ψ1+10ψ2 → (0, 0, 1, 1, -4, 10) | V2ω4 → (0, 0, 0, 2, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
|
|
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | ω1+ω3 −ω1+ω2+ω3 ω1−ω3 −ω2+ω3 −ω1+ω2−ω3 −ω2−ω3 | ω2+ω3 ω1−ω2+ω3 ω2−ω3 −ω1+ω3 ω1−ω2−ω3 −ω1−ω3 | 2ω3 0 −2ω3 | ω1+ω4 −ω1+ω2+ω4 ω1−ω4 −ω2+ω4 −ω1+ω2−ω4 −ω2−ω4 | ω2+ω4 ω1−ω2+ω4 ω2−ω4 −ω1+ω4 ω1−ω2−ω4 −ω1−ω4 | ω3+ω4 −ω3+ω4 ω3−ω4 −ω3−ω4 | ω3+ω4 −ω3+ω4 ω3−ω4 −ω3−ω4 | 2ω4 0 −2ω4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | ω1+ω3−2ψ1+12ψ2 −ω1+ω2+ω3−2ψ1+12ψ2 ω1−ω3−2ψ1+12ψ2 −ω2+ω3−2ψ1+12ψ2 −ω1+ω2−ω3−2ψ1+12ψ2 −ω2−ω3−2ψ1+12ψ2 | ω2+ω3+2ψ1−12ψ2 ω1−ω2+ω3+2ψ1−12ψ2 ω2−ω3+2ψ1−12ψ2 −ω1+ω3+2ψ1−12ψ2 ω1−ω2−ω3+2ψ1−12ψ2 −ω1−ω3+2ψ1−12ψ2 | 2ω3 0 −2ω3 | ω1+ω4+2ψ1+2ψ2 −ω1+ω2+ω4+2ψ1+2ψ2 ω1−ω4+2ψ1+2ψ2 −ω2+ω4+2ψ1+2ψ2 −ω1+ω2−ω4+2ψ1+2ψ2 −ω2−ω4+2ψ1+2ψ2 | ω2+ω4−2ψ1−2ψ2 ω1−ω2+ω4−2ψ1−2ψ2 ω2−ω4−2ψ1−2ψ2 −ω1+ω4−2ψ1−2ψ2 ω1−ω2−ω4−2ψ1−2ψ2 −ω1−ω4−2ψ1−2ψ2 | ω3+ω4+4ψ1−10ψ2 −ω3+ω4+4ψ1−10ψ2 ω3−ω4+4ψ1−10ψ2 −ω3−ω4+4ψ1−10ψ2 | ω3+ω4−4ψ1+10ψ2 −ω3+ω4−4ψ1+10ψ2 ω3−ω4−4ψ1+10ψ2 −ω3−ω4−4ψ1+10ψ2 | 2ω4 0 −2ω4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | Mω1+ω3−2ψ1+12ψ2⊕M−ω1+ω2+ω3−2ψ1+12ψ2⊕M−ω2+ω3−2ψ1+12ψ2⊕Mω1−ω3−2ψ1+12ψ2⊕M−ω1+ω2−ω3−2ψ1+12ψ2⊕M−ω2−ω3−2ψ1+12ψ2 | Mω2+ω3+2ψ1−12ψ2⊕Mω1−ω2+ω3+2ψ1−12ψ2⊕M−ω1+ω3+2ψ1−12ψ2⊕Mω2−ω3+2ψ1−12ψ2⊕Mω1−ω2−ω3+2ψ1−12ψ2⊕M−ω1−ω3+2ψ1−12ψ2 | M2ω3⊕M0⊕M−2ω3 | Mω1+ω4+2ψ1+2ψ2⊕M−ω1+ω2+ω4+2ψ1+2ψ2⊕M−ω2+ω4+2ψ1+2ψ2⊕Mω1−ω4+2ψ1+2ψ2⊕M−ω1+ω2−ω4+2ψ1+2ψ2⊕M−ω2−ω4+2ψ1+2ψ2 | Mω2+ω4−2ψ1−2ψ2⊕Mω1−ω2+ω4−2ψ1−2ψ2⊕M−ω1+ω4−2ψ1−2ψ2⊕Mω2−ω4−2ψ1−2ψ2⊕Mω1−ω2−ω4−2ψ1−2ψ2⊕M−ω1−ω4−2ψ1−2ψ2 | Mω3+ω4+4ψ1−10ψ2⊕M−ω3+ω4+4ψ1−10ψ2⊕Mω3−ω4+4ψ1−10ψ2⊕M−ω3−ω4+4ψ1−10ψ2 | Mω3+ω4−4ψ1+10ψ2⊕M−ω3+ω4−4ψ1+10ψ2⊕Mω3−ω4−4ψ1+10ψ2⊕M−ω3−ω4−4ψ1+10ψ2 | M2ω4⊕M0⊕M−2ω4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | 2M0 | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | Mω1+ω3−2ψ1+12ψ2⊕M−ω1+ω2+ω3−2ψ1+12ψ2⊕M−ω2+ω3−2ψ1+12ψ2⊕Mω1−ω3−2ψ1+12ψ2⊕M−ω1+ω2−ω3−2ψ1+12ψ2⊕M−ω2−ω3−2ψ1+12ψ2 | Mω2+ω3+2ψ1−12ψ2⊕Mω1−ω2+ω3+2ψ1−12ψ2⊕M−ω1+ω3+2ψ1−12ψ2⊕Mω2−ω3+2ψ1−12ψ2⊕Mω1−ω2−ω3+2ψ1−12ψ2⊕M−ω1−ω3+2ψ1−12ψ2 | M2ω3⊕M0⊕M−2ω3 | Mω1+ω4+2ψ1+2ψ2⊕M−ω1+ω2+ω4+2ψ1+2ψ2⊕M−ω2+ω4+2ψ1+2ψ2⊕Mω1−ω4+2ψ1+2ψ2⊕M−ω1+ω2−ω4+2ψ1+2ψ2⊕M−ω2−ω4+2ψ1+2ψ2 | Mω2+ω4−2ψ1−2ψ2⊕Mω1−ω2+ω4−2ψ1−2ψ2⊕M−ω1+ω4−2ψ1−2ψ2⊕Mω2−ω4−2ψ1−2ψ2⊕Mω1−ω2−ω4−2ψ1−2ψ2⊕M−ω1−ω4−2ψ1−2ψ2 | Mω3+ω4+4ψ1−10ψ2⊕M−ω3+ω4+4ψ1−10ψ2⊕Mω3−ω4+4ψ1−10ψ2⊕M−ω3−ω4+4ψ1−10ψ2 | Mω3+ω4−4ψ1+10ψ2⊕M−ω3+ω4−4ψ1+10ψ2⊕Mω3−ω4−4ψ1+10ψ2⊕M−ω3−ω4−4ψ1+10ψ2 | M2ω4⊕M0⊕M−2ω4 |