Processing math: 100%
Subalgebra A12+2A11A16
51 out of 61
Computations done by the calculator project.

Subalgebra type: A12+2A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A12+A11 .
Centralizer: T2 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A16
Basis of Cartan of centralizer: 2 vectors: (0, 1, 0, -1, 0, 0), (2, -2, -1, 0, -4, -2)

Elements Cartan subalgebra scaled to act by two by components: A12: (1, 1, 1, 1, 1, 1): 2, (0, 0, 0, 0, 0, -1): 2, A11: (0, 1, 1, 1, 0, 0): 2, A11: (0, 0, 1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: g21, g6, g13, g3
Positive simple generators: g21, g6, g13, g3
Cartan symmetric matrix: (2100120000200002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2100120000200002)
Decomposition of ambient Lie algebra: V2ω42Vω3+ω4Vω2+ω4Vω1+ω4V2ω3Vω2+ω3Vω1+ω3Vω1+ω22V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+ω32ψ1+12ψ2Vω3+ω44ψ1+10ψ2Vω1+ω4+2ψ1+2ψ2V2ω4V2ω3Vω1+ω22V0Vω2+ω42ψ12ψ2Vω3+ω4+4ψ110ψ2Vω2+ω3+2ψ112ψ2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra.h4+h2h62h51/2h3h2+h1g19g16g17g13g12g14g8g9g3
weight00ω1+ω2ω1+ω3ω2+ω32ω3ω1+ω4ω2+ω4ω3+ω4ω3+ω42ω4
weights rel. to Cartan of (centralizer+semisimple s.a.). 00ω1+ω2ω1+ω32ψ1+12ψ2ω2+ω3+2ψ112ψ22ω3ω1+ω4+2ψ1+2ψ2ω2+ω42ψ12ψ2ω3+ω4+4ψ110ψ2ω3+ω44ψ1+10ψ22ω4
Isotypic module decomposition over primal subalgebra (total 10 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0, 0, 0, 0)Vω1+ω2 → (1, 1, 0, 0, 0, 0)Vω1+ω32ψ1+12ψ2 → (1, 0, 1, 0, -2, 12)Vω2+ω3+2ψ112ψ2 → (0, 1, 1, 0, 2, -12)V2ω3 → (0, 0, 2, 0, 0, 0)Vω1+ω4+2ψ1+2ψ2 → (1, 0, 0, 1, 2, 2)Vω2+ω42ψ12ψ2 → (0, 1, 0, 1, -2, -2)Vω3+ω4+4ψ110ψ2 → (0, 0, 1, 1, 4, -10)Vω3+ω44ψ1+10ψ2 → (0, 0, 1, 1, -4, 10)V2ω4 → (0, 0, 0, 2, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h4+h2
h62h51/2h3h2+h1
Semisimple subalgebra component.
g19
g6
g21
h6
h6h5h4h3h2h1
g21
2g6
g19
g16
g11
g1
g5
g20
g17
g17
g20
g5
g1
g11
g16
Semisimple subalgebra component.
g13
h4+h3+h2
2g13
g12
g15
g7
g10
g18
g14
g14
g18
g10
g7
g15
g12
g8
g4
g2
g9
g9
g2
g4
g8
Semisimple subalgebra component.
g3
h3
2g3
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω3
ω1+ω2+ω3
ω1ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω3
ω1ω2ω3
ω1ω3
2ω3
0
2ω3
ω1+ω4
ω1+ω2+ω4
ω1ω4
ω2+ω4
ω1+ω2ω4
ω2ω4
ω2+ω4
ω1ω2+ω4
ω2ω4
ω1+ω4
ω1ω2ω4
ω1ω4
ω3+ω4
ω3+ω4
ω3ω4
ω3ω4
ω3+ω4
ω3+ω4
ω3ω4
ω3ω4
2ω4
0
2ω4
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω32ψ1+12ψ2
ω1+ω2+ω32ψ1+12ψ2
ω1ω32ψ1+12ψ2
ω2+ω32ψ1+12ψ2
ω1+ω2ω32ψ1+12ψ2
ω2ω32ψ1+12ψ2
ω2+ω3+2ψ112ψ2
ω1ω2+ω3+2ψ112ψ2
ω2ω3+2ψ112ψ2
ω1+ω3+2ψ112ψ2
ω1ω2ω3+2ψ112ψ2
ω1ω3+2ψ112ψ2
2ω3
0
2ω3
ω1+ω4+2ψ1+2ψ2
ω1+ω2+ω4+2ψ1+2ψ2
ω1ω4+2ψ1+2ψ2
ω2+ω4+2ψ1+2ψ2
ω1+ω2ω4+2ψ1+2ψ2
ω2ω4+2ψ1+2ψ2
ω2+ω42ψ12ψ2
ω1ω2+ω42ψ12ψ2
ω2ω42ψ12ψ2
ω1+ω42ψ12ψ2
ω1ω2ω42ψ12ψ2
ω1ω42ψ12ψ2
ω3+ω4+4ψ110ψ2
ω3+ω4+4ψ110ψ2
ω3ω4+4ψ110ψ2
ω3ω4+4ψ110ψ2
ω3+ω44ψ1+10ψ2
ω3+ω44ψ1+10ψ2
ω3ω44ψ1+10ψ2
ω3ω44ψ1+10ψ2
2ω4
0
2ω4
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω32ψ1+12ψ2Mω1+ω2+ω32ψ1+12ψ2Mω2+ω32ψ1+12ψ2Mω1ω32ψ1+12ψ2Mω1+ω2ω32ψ1+12ψ2Mω2ω32ψ1+12ψ2Mω2+ω3+2ψ112ψ2Mω1ω2+ω3+2ψ112ψ2Mω1+ω3+2ψ112ψ2Mω2ω3+2ψ112ψ2Mω1ω2ω3+2ψ112ψ2Mω1ω3+2ψ112ψ2M2ω3M0M2ω3Mω1+ω4+2ψ1+2ψ2Mω1+ω2+ω4+2ψ1+2ψ2Mω2+ω4+2ψ1+2ψ2Mω1ω4+2ψ1+2ψ2Mω1+ω2ω4+2ψ1+2ψ2Mω2ω4+2ψ1+2ψ2Mω2+ω42ψ12ψ2Mω1ω2+ω42ψ12ψ2Mω1+ω42ψ12ψ2Mω2ω42ψ12ψ2Mω1ω2ω42ψ12ψ2Mω1ω42ψ12ψ2Mω3+ω4+4ψ110ψ2Mω3+ω4+4ψ110ψ2Mω3ω4+4ψ110ψ2Mω3ω4+4ψ110ψ2Mω3+ω44ψ1+10ψ2Mω3+ω44ψ1+10ψ2Mω3ω44ψ1+10ψ2Mω3ω44ψ1+10ψ2M2ω4M0M2ω4
Isotypic character2M0Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω32ψ1+12ψ2Mω1+ω2+ω32ψ1+12ψ2Mω2+ω32ψ1+12ψ2Mω1ω32ψ1+12ψ2Mω1+ω2ω32ψ1+12ψ2Mω2ω32ψ1+12ψ2Mω2+ω3+2ψ112ψ2Mω1ω2+ω3+2ψ112ψ2Mω1+ω3+2ψ112ψ2Mω2ω3+2ψ112ψ2Mω1ω2ω3+2ψ112ψ2Mω1ω3+2ψ112ψ2M2ω3M0M2ω3Mω1+ω4+2ψ1+2ψ2Mω1+ω2+ω4+2ψ1+2ψ2Mω2+ω4+2ψ1+2ψ2Mω1ω4+2ψ1+2ψ2Mω1+ω2ω4+2ψ1+2ψ2Mω2ω4+2ψ1+2ψ2Mω2+ω42ψ12ψ2Mω1ω2+ω42ψ12ψ2Mω1+ω42ψ12ψ2Mω2ω42ψ12ψ2Mω1ω2ω42ψ12ψ2Mω1ω42ψ12ψ2Mω3+ω4+4ψ110ψ2Mω3+ω4+4ψ110ψ2Mω3ω4+4ψ110ψ2Mω3ω4+4ψ110ψ2Mω3+ω44ψ1+10ψ2Mω3+ω44ψ1+10ψ2Mω3ω44ψ1+10ψ2Mω3ω44ψ1+10ψ2M2ω4M0M2ω4

Semisimple subalgebra: W_{2}+W_{5}+W_{10}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00, 0.00): (266.67, 333.33)
1: (0.00, 1.00, 0.00, 0.00, 0.00, 0.00): (233.33, 366.67)
2: (0.00, 0.00, 1.00, 0.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
5: (0.00, 0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 535 arithmetic operations while solving the Serre relations polynomial system.